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k)= — (kaG(O) 3 k2 22G(0) + ) olk) (6.26) :
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Simple algebraic manipulations, which consist in substituting these rela-

tions into those of Sect. 3.3.1, lead to the same results as those that have just

been explained for the physma.l space. To do this, we need simply 1den‘[1fy
groups of the form .’c”“qb( ) with the term 6" ¢(x)/0z™.

Tterative Deconvolution. If the filter kernel G has an inverse G™1, the
latter can also be obtained using the following expansion [319, 320}:

Glxp= Y I~GFxp , (6.27)

p=0,00

yielding the following reconstruction for the defiltered variable ¢:

e—lll

$=F+@F-D)+(B-2+) +... . (6.28)

or equivalently

=@+ @28+ + (6.29)

The series are known to be convergent if |I — G| < 1. A practical model
is obtained by truncating the expansion at a given power. Stolz and Adams
[319] recommend using a fifth-order expansion.

6.1.2 Non-linear Models

There are a number of ways of deriving non-linear models: Horiuti [140],

Speziale [315], Yoshizawa [359], and Wong [348] start with an expansion
in a small parameter, while Lund and Novikov [205] use the mathematical
properties of the tensors considered. Tt is this last approach that will be
doescribed first, because it is the one that best reveals the difference with
the functional models. Kosovic’s simplified model [167] and Wong's dynamic
model [348] are then described.

Generic Model of Lund and Novikov. We assume that the deviator of
the subgrid tensor can be expressed as a function of the resolved velocity field
gradients (and not the velocity field itself, to ensure the Galilean invariance
property), the unit tensor, and the square of the cutoff length A

1
Tij — BTWS” = . .7:(8”, Q”. sy A i (6.30)

The isotropic part of 7 is r£>t taken into account, and is integrated in the
pressure term because S and 2 have zero traces. To simplify the expansions
in the following, we use the reduced notation:

S0 =Sullyy, 2 T) =5,0:0k
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The most general form for relation (6. 302 is a polynomial of infinite degree
of tersors whose terms are of the form S Iaeg s u4..., where the a; are

_positive integers. Each terms in the series is multiplied by a coefficient, which

is itself a function of the invariants of S and 0. This series can be reduced to a
finite number of linearly independent terms by the Cayley- Hamilton theorem.
Since the tensor 74 is symmetrical, we retain only the symmetrical terms here.
The computations lead to the definition of eleven tensors, my, ..., m11, with
which Iy, ..., Iy are associated:

S =2

my = 5, myg =8,
mg = (b, my = 5003,
ms = 50 -08, me = Id,
. — =2 e e P (631)
my =80 +0°8, mg = QSX -0 8N,
me = 505 — 505, myp =50 +0°5,
mi1 = ﬁ-3-2§2 m§2§2§= -
—2 —2
I = 1}[‘(5 ), Ig_ = tl'(ﬂ ),
Is = (8%, Ih= (Ts"ﬁ2 , (6.32)
Iy = (50, Iy = x(§°0°5Q),

where Id designates the identity tensor.

These tensors are independent in the sense that none can be decomposed
into a linear sum of the ten others, if the coefficients are constrained to
appear as polynomials of the six invariants defined above. If we relax this last

* constraint by considering the polynomial quotients of the invariants too, then

only six of the eleven tensors are linearly independent. The tensors defined
above are no longer linearly independent in two cases: when the tensor 5
has & double eigenvalue and when two components of the vorticity disappear
when expressed in the specific reference of 5. The first case corresponds to
an ax1symmetr1w,1 shear and the second to a situation where the rotation is
about a single axis aligned with one of the eigenvectors of 5. Assuming that
neither of these conditions is verified, six of the terms of (6.31) are sufficient
for representing the tensor 7, and five for representing its deviator part, which
is consistent with the fact that a second-order symmetrical tensor with zero
trace has only five degrees of freedom in the third dimension. We then obtain
the generic polynomial form:

= OGS+ A (S + CA (@)
1 CHA (S R—G8) LCA —(S Q30 (6.33)

|51

where the C;, ¢ = 1,5 are constanis to be determined. This type of model
is analogous in form to the non-linear statistical turbulence models [314,
315]. Numerical exper’ “ents performed by the authors on cases of isotropic
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homogeneous turbulence have shown that this modeling, while yielding good
results, is very costly. Also, computing the different constants raises problems

because their dependence as a function of the tensor invariants involved is .

complex. Meneveau et al. [231] attempted to compute these components by
statistical techniques, but achieved no significant improvement over the linear
model in the prediction of the subgrid tensor eigenvectors. :

We note that the first term of the expansion corresponds to subgrid viscos-
ity models for the forward energy cascade based on large scales, which makes
it possible to interpret this type of expansion as a sequence of departures
from symmetry: the isotropic part of the tensor is represented by a spherical
tensor, and the first term represents a first departure from symmetry but

prevents the inclusion of the inequality of the normal subgrid stresses®. The |

anisotropy of the normal stresses is included by the following terms, which
therefore represent a new departure from symmetry.

Kosovic’s Simplified Non-Linear Model. In order to reduce the algo-

rithmic cost of the subgrid model, Kosovic [167] proposes neglecting certain
terms in the generic model presented above. After neglecting the high-order -
terms on the basis of an analysis of their orders of magmtude, the auLhor ;

proposes the following model:

fi

T 7

o s s — — 1—
—(C.A) {2(2|S\2)1/232-j +Cy (Sikskj - gsmnsmn&-j)

+ Ca (Sl — QinSrs)] (6.34)

where Cj is the constant of the subgrid viscosity model based on the large

scales (see Sect. 4.3.2) and C; and Cs two constants to be determined. After ;

computation, the local equilibrium hypothesis is expressed:

{€) = —(nj Sij)

= (CsA)?(2 [(2)?]2)1/2§ij§ij + Clgikgkjgji]) - (6-35}_

In the framework of the canonical case (isotropic turbulence, infinite i in-
ertial range, sharp cutoff filter), we get (see [17]):

- 8'1121
gKo(e)W Spa/3 | (6.36)

fl

3 This is true for all modeling of the form 7 = (V. ® V) in which V is an arbitrary
vector. If is trivially verified that the tensor (V @ V) admits only a single non-

zero eigenvalue A = (Vi2+ V2 + Vi), while the subgrid tensor in the most general -

case has three distinct eigenvalues. i
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= = . _ 105 (8w \®
BuBuBi = (22

105 p_ N
—'?S(kc) (EK{]) (E)kc 3 (637)

- where coefficient S(k.) is defined as:

st = (32 ) (32 )y (6.39)

Substituting these expressions in relation {6.35) yields:

960

O;S(kc)] ( gl{o)m k2 e) . (6.39)

This relation provides a way of relating the constants C; and C; and
thereby computing €} once Cs is determined by reasoning similar to that
explained in the chapter on functional models. The asymptotic value of

(&)= (G2 {1 .

s (k) is evaluated by theory and experimental observation at between 0.4

and 0.8, as k. — co. The constant (%, cannot be determined this way, since

- the contribution of the antl—symmetrxcal of the velocity gradient to the energy

transfer is null?,
On the basis of simple examples of anisotropic homogencous turbulence,
Kosovic proposes: :

Com Oy (6.40)

~ which completes the descriptioﬁ of the model.

Dynamic Non-Linear Model. Kosovic's approach uses some hypotheses

intrinsic to the subgrid modes, for example the existence of a theoretical

_ the spectrum shape and the local equilibrium hypothesis. To relax these

constraints, Wong [348] proposes computing the constants of the non-linear

+ models by means of a dynamic procedure.

To do this, the author proposes a model of the form (we use the same

notation here as in the description of the dynamic model with one equation
+ for the kinetic energy, in Sect. 4.4.2): :

Tij = gqsgb =~ 201A,/q2, 5 — Ny, (6.41)
where C1 and Cy are constants and q§g5 the subgrid kinetic energy, and
4."his is because we have the relation

0;;8;;=0 , -

since the tensors {1 and § are anti-symmetrical and symmetrical, respectively.
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' - I 1— : . 1=
I\‘ 7= Sz‘kskj i gsmnsmnéﬁ + Sz‘j — gSmm&, 3 (642)
where ?m is the Oldroyd® derivative of Sy
= _DS; &in  Bujo
Fipmiiy, G dlie ,
£ Dt Oy, hg Oxy, Ski (643

where D/ D¢ is the material derivative associated with the velocity field @
The isotropic part of this model is based on the kinetic energy of the subgrid
modes {see Sect. 4.3.2). Usually, we introduce a test filter symbolized by a

tilde, the cutoff length of which is denoted A. Using the same. model, the
subgrid tensor corresponding to the test filter is expressed:

2 = ;
;= 3 5@,5 2C’1A 2238 Sm CHy; (6.44)
Whete ngs is the subgrid kinetic energy corresponding to the test filter,

and T ;; the tensor analogous to Ny;, constructed from the velocity field b
Using the two expressions (6.41) and (6.44), the Germano identity (4. 126) is
expressed:

TEJ‘ — T

_(Q

I?

QSgs)d'ij + 2012/113 -+ szzBij i

in which

Ay = Bgnf @2 — —Smf by s
( )2

F’ij T
qsgs)&j + 20, A4;; + Cs A’ B;;

(6.46)

N

Ny &

L]

(6.47)
We then define the residual E;;:

E’H = LE] - (ngs (6.48) i

The two constants C; and C' are then computed in such a way as to:
minimize the scalar residual E;; 5, i.e.
OE; Eyj

oC

_ 5‘E?;jEz-j
0Cs

=0

5 This derivative responds to the principle of objectivity, i.e. it is invariant if the -
reference system in which the motion is observed is changed :

* modes u’ are then represented by a random process v°
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A simultaneous evaluation of these two parameters leads to:
9AC, ~ Lunn(AmnBpqBpg — BmnApgBpq) _ (6.50)
¢ A AnBiiBij — (A Bij)? ’
ZZOQ - Limn(Bmn ApgApg — AmnquB;uq) (6.51)
' Api A Bij Bij — (Ai; Byj)?

The quantities qqgs and ngs are obtained by solving the corresponding
evolution equations, which are described in the chapter on functional rodels.
This completes computation of the subgrid model.

One variant that does not require the use of additional evolution equations
is derived using a model based on the gradient of the resolved scales instead
of one based on the subgrid kinetic energy, to describe the isotropic term.
The subgrid tensor deviator is now modeled as:

1 e
Tij — "'“'rk.fcdij = 20,4 (6.52)

§' g ng\’:‘j

The two parametem computed by the dynamxc procedure are now A’ )

and A (. The expressions obtained are identical in form to relations (6.50)
and (6.51), where the tensor A;; is defined as:

2

e A
S|Ss; (j)

Aij = |5[Si; - (6.53)

2 6.1.3 Homogenization Technique:
* Perrier a_nd Pironneau Models -

: General Description. Another category of models derived from an ex-

pansion in a small parameter is that of the models obtained by Perrier and

- Pironneau [263] by means of the homogenization theory. This approach, which
" consists in solving the evolution equations of the filtered field separately from

those of the subgrid modes, is based on the assumption that the cutoff is
located within the inertial range at each point. The resolved field W and the
subgrid field u’ are computed on two different grids by a couphng algorithm.
In all of the following, we adopt the hypothesis that u’ = 0. The subgrid
, which depends on
the dissipation ¢, and the viscosity v, and which is tra. nqported by the resolved
field 1. This modeling is denoted symbolically: '
x—1t ¢

u = vﬁ (53 5 5_2) 3

in which 6! is the largest wave number in the inertial range and 677 the
highest frequency cons”  ed. As the inertial range is assumed to extend to

(6.54)



